
First Year Report

Löıc Fejoz

March 2, 2007

Contents

1 Introduction 1

2 Related work 2
2.1 Lock-free libraries and algorithms 2
2.2 Basic notions . 2

3 My Work 3
3.1 Introduction . 3
3.2 Assume-Guarantee in Isabelle 4
3.3 B method . 4
3.4 TLA+ and +CAL . 5

4 Future work and conclusion 5

5 Courses 6
5.1 TiC06 . 6
5.2 Models and multi-agents system 6

A B Machines 6

B Concrete Syntax 10

C Assignment 12
C.1 Atomic assignement . 12
C.2 Atomic assignement with CAS 12

D Bibliography 15

1 Introduction

One year ago my project proposal was to apply well-known methods in my
research team to lock-free algorithms. Those methods are B, TLA+ and

1

model-checking. Those methods imply a top-down approach. So the idea
was to develop new algorithms. Since then I discovered a lot of algorithms
and a lot of work on developing such algorithms. But proofs were very
rare and none of them were written within a proof-assistant. Therefore, I
want to justify lock-free algorithms by applying well-known methods, and
in particular B and TLA+.

In this report, I will first introduce lock-free algorithms and their prop-
erties. I will also present methods that should be useful for proving algo-
rithms. Then I will expose my preliminary work with those methods. I will
end with suggestions for an easier method to use for proving the correctness
of lock-free algorithms.

2 Related work

2.1 Lock-free libraries and algorithms

Usually algorithms that manage a shared data structure use locks. Lock-
free algorithms are designed such that they allow multiple processes (a.k.a.
threads) to access the shared data structure concurrently, either for reading
or writing. Instead of central locking, these algorithms rely on particular
atomic primitives. It solve problems like deadlock and priority inversion.
Depending on the contention it can also be more efficient. Those new al-
gorithms are possible because hardwares now provide some complex atomic
primitives.

A lot of work as been done in the last three years. It starts from research
articles about algorithms (with justifications) [16, 7, 17, 12], to fully useable
libraries [3, 12, 1]. In between we can find stand-alone algorithms [11, 2, 4].

Another interesting project is Software Transaction Memory [5]. It is
partially related to lock-free algorithms. Indeed it provides programmers
with a high-level view of transaction. In the background (implementation)
it is based on lock-free algorithms. It would be nice for the target method
to be able to prove those implementations.

2.2 Basic notions

Actually a data-structure is not changed by a single algorithm but by several.
For instance, on a list you will find an algorithm for appending an element,
one for retrieving while deleting elements, and one for inserting. Those
algorithms can be run concurrently by several process.

When reasoning about a data-structure, it helps if all methods appear to
be executed atomically. This property is called linearisability [10]. A con-
current execution trace is linearisable iff there exists a sequential execution
trace that has the same externally observable behaviour.

2

x = f(x);

Figure 1: A non-implementable assignment

Usually locks are replaced by loops that use atomic primitives provided
by the processor (like the CAS 1 presented in section 3.1). So we can wonder
about termination. This leads to the following definition. I have not focused
yet on liveness properties and termination problem.

wait-free All threads make progress even if others incur delays;

lock-free Some thread always makes progress;

obstruction-free guarantees progress for any thread that eventually exe-
cutes in isolation.

3 My Work

3.1 Introduction

During the first year of the thesis, my work was around the use of Compare-
and-Swap (a.k.a. CAS). CAS 1 is an atomic operation that can be found on
modern processors. It is also known as a universal constructor for atomic
operations [9]. CAS 1 is equivalent to the atomic execution of:

word t CAS1(word t *a, word t o, word t n) {
old = *a;
if (old == o) {

*a = n;
}
return old;

}

I will sometimes use an operation called BCAS 1. It is similar to CAS 1

but returns TRUE if the reference cell was updated and FALSE otherwise.
In this section I will present my preliminary experiences with proving a

very simple concurrent algorithm. But one must keep in mind that my goal
is to prove algorithms from [8]. There is a set of patterns used by Lock-free
algorithms. This is were the following pattern comes from.

The pattern is simply replacing one assignment of the type shown in
figure 1 by the program shown in figure 2, where f is a pure function (i.e.
it has no side effects).

I want to prove that the latter could substitute the former. But to do
so I need to tell in which environment the algorithm is used. Following the

3

b = false;
do {

v = x;
fv = f(v);
b = BCAS1(x, v, fv);

} while(!b);

Figure 2: Assignment with BCAS 1

assume-guarantee method, I want to compose the algorithm with another
process that can assign any value (respecting the type) to x.

In the following sections I will explain my attempts to prove this algo-
rithm in different languages. Some of them are supported by tools.

3.2 Assume-Guarantee in Isabelle

A rely-guarantee tuple 〈rely , guarantee〉{φ}P{ψ} is pretty much like a Hoare
triple but it adds two predicates: rely that expresses what this program P
relies on from the other programs to be correct, and guarantee that expresses
what this part P guarantees to the other. This logic [14] has been encoded
in Isabelle [15].

One part of proving the assignment example is to show that the tuple
〈b′ = b ∧ fv′ = fv ∧ v′ = v, x′ = x ∨ x′ = f(x)〉{>}P{>} holds (P being
the program on figure 2). The first step was to modify the language to
add BCAS 1 in the primitive language (defined in appendix A). The proof
is given in appendix A.

The proof is only a partial one as we have not proved that the assignment
is done only once. For that purpose we could have added some ghost variable
that counts how many time we are doing the assignment. The post-condition
would then assert that the counter equals one.

This framework does not suit well our purpose because:

1. you need extra variables;

2. it does not permit to develop a family of algorithms;

3. the proof is messed up with encoding details;

3.3 B method

The simplest way to reason about concurrent program is by using invariants.
It is one of the main ideas of the B method besides refinement. The B method
was elaborated by Jean-Raymond Abrial [6]. It is a well-established method
and several tools exist to prove refinements. Indeed the method describes

4

a system by a set of events. Then you can refine a specification by either
adding concrete events or by adding data refinement.

Appendix A presents a simple B machine M0 that just defines a system
where two kinds of events can happen, either the guarantee or the rely event.
Then we derive two refinement machines. The first one, M1 (on page 8),
explicitly introduces the concrete operations, and the second one, M2 (on
page 8), adds flow control with a place predicate.

The B method can help us to co-develop several algorithms but it does
not ease the reading of the invariant by not allowing local invariants. Also
refinement needs to be done on a per event basis, that is why in the most
abstract specification M0 (on page 6), the action guar appears several times.
Making several (clever) refinements helps the proofs to be done automati-
cally; otherwise interactive proofs would have been necessary.

3.4 TLA+ and +CAL

I wrote similar specifications as the previous ones but with TLA+. Unfortu-
nately, TLA+ only comes with a model-checker. But Lamport has defined
an interesting language called +CAL [13]. +CAL is an algorithm language.
It is meant to replace pseudo-code for writing high-level descriptions of al-
gorithms. +CAL specifications are then translated into TLA+.

+CAL and TLA+ could have been well-suited for our problem provided
that you could choose the granularity of statements and that a prover ex-
isted. The notation is powerful and elegant. Also one good point is that
you do not need to express which event refines which one, i.e. it does not
ask for a linearisability point as B does.

4 Future work and conclusion

It was very insightful and interesting to try to prove such a simple algo-
rithm with those different methods. It let me discover their strengths and
weaknesses towards our problem.

So a well-suited method for our problem should allow

• to jointly develop several algorithms,

• to refine from an atomic specification to a lock-free one,

• to compose several specifications,

• to express linearisability points only when needed,

• one algorithm to do job in advance for another one — another common
pattern in lock-free algorithms —,

• not to use explicit place predicates.

5

I have recently started to define such a method and I will further develop
it in the comming months. I will then use it to prive at least the RDCSS
algorithm.

5 Courses

5.1 TiC06

In July, I attended the summer school TiC. TiC stands for Trends in Concur-
rency. The goal of the school was to expose graduate students and young re-
searchers to new ideas in concurrent programming from experts in academia
and industry. The school was organised at the Centro Residenziale Univer-
sitario of the University of Bologna, situated in Bertinoro. More details can
be found at http://www.cs.purdue.edu/homes/jv/events/TiC06/.

Several courses where directly useful for my subject. The most notable
one was “Highly Concurrent Data Structures” by Maurice Herlihy. Indeed
he presented an algorithm for set that uses a lock-free list. It would be nice
to prove its correctness. There were also courses about memory models and
process algebras. It was also interesting to meet people to whom state your
problem, do some tools demo and get some tips and ideas.

5.2 Models and multi-agents system

This course was part of my local obligation from the PhD program in Nancy.
It is not strictly related to my topics as it presented concepts for multi-
agents system and their building. It then focused on reactive multi-agents
for simulating complex phenomena. Finally it presented a cognitive model of
agents. More details can be found at http://fst.uhp-nancy.fr/details/
form ue/form ue MAIF3U22.html. But it was interesting to consider their
problems, especially how to link (and prove?) the global system behaviour
towards the local agent’s behaviour.

A B Machines

MODEL
M0

/* This is a simple modelisation of the following RG Tuple:
<b:=b & v:=v & fv:=fv & x:: INTEGER, x:=f(x) or x:=x>{TRUE}x:=f(x){TRUE} */
VARIABLES

x, b, fv, v
CONSTANTS

f
PROPERTIES

f : INTEGER −−> INTEGER 10

INVARIANT

6

http://www.cs.purdue.edu/homes/jv/events/TiC06/
http://fst.uhp-nancy.fr/details/form_ue/form_ue_MAIF3U22.html
http://fst.uhp-nancy.fr/details/form_ue/form_ue_MAIF3U22.html

x : INTEGER &
b : BOOL &
v : INTEGER &
fv : INTEGER

INITIALISATION
x :: INTEGER | |
b :: BOOL | |
v :: INTEGER | |
fv :: INTEGER 20

EVENTS
/* This algorithm rely on the other to not change his local
variables but they can modify x */

rely = BEGIN
b := b | |
v := v | |
fv := fv | |
x :: INTEGER

END;
30

guar1a = BEGIN
x := x | |
b :: BOOL | |
v :: INTEGER | |
fv :: INTEGER

END;

guar1b = BEGIN
x := x | |
b :: BOOL | | 40

v :: INTEGER | |
fv :: INTEGER

END;

guar1c = BEGIN
x := x | |
b :: BOOL | |
v :: INTEGER | |
fv :: INTEGER

END; 50

guar1d = BEGIN
x := x | |
b :: BOOL | |
v :: INTEGER | |
fv :: INTEGER

END;

/* This is the real event that does the assignment */
guar2d = BEGIN 60

x := f(x) | |
b :: BOOL | |
v :: INTEGER | |
fv :: INTEGER

END

7

END

REFINEMENT
M1

/* Here w begin to replace the guarante by
what the algorithm will do but without any order yet.*/
REFINES

M0
VARIABLES

x, b, fv, v
INITIALISATION

x :: INTEGER | | 10

b :: BOOL | |
v :: INTEGER | |
fv :: INTEGER

EVENTS
guar1a = BEGIN

b := FALSE
END;

guar1b = BEGIN
v := x 20

END;

guar1c = BEGIN
fv := f(v)

END;

guar1d = SELECT (x /= v) THEN
x := x | |
b := FALSE

END; 30

/* The test x=v if the one that will be done by the CAS operation.
The second condition is necessary yet but will be remove in the next refinement.
It correspond to a local invariant in the original algorithm. */

guar2d = SELECT x = v & fv = f(v)THEN
x := fv | |
b := TRUE

END
END

REFINEMENT
M2

/* This is the concrete algorithm. We must have added the place
predicate pc (aka program counter) and the correspondant
labels lbl.
We have then prove that
x := f(v)
can be replace by

8

b := FALSE;
do { 10

v := x;
fv := f(v);
b := BCAS 1(x, v, fv)

} while (not b)
*/
REFINES

M1
SETS

lbl = {PCA, PCB, PCC, PCD, PCE}
VARIABLES 20

x, b, fv, v, pc
INVARIANT

pc : lbl &
((pc = PCD) => (fv = f(v))) /* Here is the local invariant that was placed on the guard in the previous refinement!*/

INITIALISATION
x :: INTEGER | |
b :: BOOL | |
v :: INTEGER | |
fv :: INTEGER | |
pc := PCA 30

EVENTS
guar1a = SELECT pc = PCA THEN

b := FALSE | |
pc := PCB

END;

guar1b = SELECT pc = PCB THEN
v := x | |
pc := PCC

END; 40

guar1c = SELECT pc = PCC THEN
fv := f(v) | |
pc := PCD

END;

/* In that case the CAS test fails. b := CAS 1(x, v, fv)*/
guar1d = SELECT pc = PCD & x /= v THEN

x := x | |
b := FALSE | | 50

pc := PCB
END;

/* The CAS operation is done. b := BCAS 1(x, v, fv)*/
guar2d = SELECT pc = PCD & x = v THEN

x := fv | |
b := TRUE | |
pc := PCE

END
60

END

9

B Concrete Syntax

theory RG_Syntax

imports "~~/src/HOL/HoareParallel/RG_Hoare" "~~/src/HOL/HoareParallel/Quote_Antiquote"

begin

syntax
"_Assign" :: "idt ⇒ ’b ⇒ ’a com" ("(´_ :=/

_)" [70, 65] 61)

"_skip" :: "’a com" ("SKIP")

"_Seq" :: "’a com ⇒ ’a com ⇒ ’a com" ("(_;;/ _)"

[60,61] 60)

"_Cond" :: "’a bexp ⇒ ’a com ⇒ ’a com ⇒ ’a com" ("(0IF _/

THEN _/ ELSE _/FI)" [0, 0, 0] 61)

"_Cond2" :: "’a bexp ⇒ ’a com ⇒ ’a com" ("(0IF _ THEN

_ FI)" [0,0] 56)

"_While" :: "’a bexp ⇒ ’a com ⇒ ’a com" ("(0WHILE

_ /DO _ /OD)" [0, 0] 61)

"_Await" :: "’a bexp ⇒ ’a com ⇒ ’a com" ("(0AWAIT

_ /THEN /_ /END)" [0,0] 61)

"_Atom" :: "’a com ⇒ ’a com" ("(〈_〉)" 61)

"_Wait" :: "’a bexp ⇒ ’a com" ("(0WAIT _

END)" 61)

"_Cas" :: "idt ⇒ ’b ⇒ ’b ⇒ ’a com" ("(CAS ´_,
_, _ SAC)" [70, 65, 65] 61)

"_Cas2" :: "idt ⇒ idt ⇒ ’b ⇒ ’b ⇒ ’a com" ("(´_ :=

CAS ´_, _, _ SAC)" [71, 71, 65, 65] 61)

"_CasB" :: "idt ⇒ idt ⇒ ’b ⇒ ’b ⇒ ’a com" ("(´_ :=

BCAS ´_, _, _ SACB)" [71, 71, 65, 65] 61)

translations
"´ x := a" ⇀ "Basic �´ (_update_name x a)�"

"SKIP"
 "Basic id"

"c1;; c2"
 "Seq c1 c2"

"IF b THEN c1 ELSE c2 FI" ⇀ "Cond .{b}. c1 c2"

"IF b THEN c FI"
 "IF b THEN c ELSE SKIP FI"

"WHILE b DO c OD" ⇀ "While .{b}. c"

"AWAIT b THEN c END"
 "Await .{b}. c"

"〈c〉"
 "AWAIT True THEN c END"

"WAIT b END"
 "AWAIT b THEN SKIP END"

"CAS ´x, a, n SAC" ⇀ "〈IF ´x=a THEN ´x:=n FI〉"
"´r := CAS ´x, a, n SAC" ⇀ "〈´r:=´x;; (IF ´x=a THEN ´x:=n FI)〉"
"´r := BCAS ´x, a, n SACB" ⇀ "〈(IF ´x=a THEN ´x:=n;; ´r:=(1::nat)

ELSE ´r:=(0::nat) FI)〉"

nonterminals
prgs

10

syntax
"_PAR" :: "prgs ⇒ ’a" ("COBEGIN//_//COEND" 60)

"_prg" :: "’a ⇒ prgs" ("_" 57)

"_prgs" :: "[’a, prgs] ⇒ prgs" ("_//‖//_" [60,57] 57)

translations
"_prg a" ⇀ "[a]"

"_prgs a ps" ⇀ "a # ps"

"_PAR ps" ⇀ "ps"

syntax
"_prg_scheme" :: "[’a, ’a, ’a, ’a] ⇒ prgs" ("SCHEME [_ ≤ _ < _] _"

[0,0,0,60] 57)

translations
"_prg_scheme j i k c"
 "(map (λi. c) [j..<k])"

Translations for variables before and after a transition:

syntax
"_before" :: "id ⇒ ’a" ("o_")

"_after" :: "id ⇒ ’a" ("a_")

translations
"ox"
 "x ´fst"
"ax"
 "x ´snd"

print translation {*

let

fun quote_tr’ f (t :: ts) =

Term.list_comb (f $ Syntax.quote_tr’ "_antiquote" t, ts)

| quote_tr’ _ _ = raise Match;

val assert_tr’ = quote_tr’ (Syntax.const "_Assert");

fun bexp_tr’ name ((Const ("Collect", _) $ t) :: ts) =

quote_tr’ (Syntax.const name) (t :: ts)

| bexp_tr’ _ _ = raise Match;

fun upd_tr’ (x_upd, T) =

(case try (unsuffix RecordPackage.updateN) x_upd of

SOME x => (x, if T = dummyT then T else Term.domain_type T)

| NONE => raise Match);

fun update_name_tr’ (Free x) = Free (upd_tr’ x)

| update_name_tr’ ((c as Const ("_free", _)) $ Free x) =

c $ Free (upd_tr’ x)

| update_name_tr’ (Const x) = Const (upd_tr’ x)

| update_name_tr’ _ = raise Match;

11

fun assign_tr’ (Abs (x, _, f $ t $ Bound 0) :: ts) =

quote_tr’ (Syntax.const "_Assign" $ update_name_tr’ f)

(Abs (x, dummyT, t) :: ts)

| assign_tr’ _ = raise Match;

in

[("Collect", assert_tr’), ("Basic", assign_tr’),

("Cond", bexp_tr’ "_Cond"), ("While", bexp_tr’ "_While_inv")]

end

*}

end

C Assignment

theory RG_Assign imports RG_Syntax begin

lemmas definitions [simp]= stable_def Pre_def Rely_def Guar_def Post_def

Com_def

C.1 Atomic assignement

record AtomicAssign =

x :: nat

lemma AtomicAssign:

shows "` ´x := f ´x sat [{| True |} ,{| True |} ,{|ax=f ox ∨ ax=ox |} ,{|
True |}]"

proof (rule Basic)

show "{|True |} ⊆ {|´(AtomicAssign.x_update (f ´AtomicAssign.x)) ∈ {|True |}|}"
by auto

next
show "stable {|True |} {|True |}"

by auto

next
show "stable {|True |} {|True |}"

by auto

next
show "{(s, t). s ∈ {|True |} ∧ (t = s(|AtomicAssign.x := f (AtomicAssign.x

s) |) ∨ t = s)} ⊆ {|ax = f ox ∨ ax = ox |}"
by (simp, auto)

qed

C.2 Atomic assignement with CAS

record AssignWithCAS =

x :: nat

v :: nat

fv :: nat

b :: nat

12

lemma AssignWithCAS:

shows "` ´b := (0::nat);; WHILE ´b = (0::nat) DO ´v := ´x;; ´fv :=

f ´v;; ´b := BCAS ´x, ´v, ´fv SACB OD sat [{| True |} ,{|av=ov ∧ ab=ob

∧ afv=ofv |} ,{|ax=ox ∨ ax=f ox |} ,{| True |}]"

proof (rule_tac mid="{| ´b = 0 |}" in Seq)

show "` ´b := 0 sat [{| True |} ,{|av=ov ∧ ab=ob ∧ afv=ofv |} ,{|ax=ox

∨ ax=f ox |} ,{| ´b = 0 |}]"

by (rule Basic, auto)

next
show "` WHILE ´b = (0::nat) DO ´v := ´x;; ´fv := f ´v;; ´b := BCAS

´x, ´v, ´fv SACB OD sat [{| ´b = 0 |} ,{|av=ov ∧ ab=ob ∧ afv=ofv |} ,{|ax=ox

∨ ax=f ox |} ,{| True |}]"
proof (rule_tac pre’="{| True |}" and

guar’="{| ax=ox ∨ ax=f ox |}" and
rely’="{| av=ov ∧ ab=ob ∧ afv=ofv |}" and
post’="{| True |}" in Conseq)

show "{| ´b = 0 |} ⊆ {| True |}"
by auto

next
show "{|av = ov ∧ ab = ob ∧ afv = ofv |} ⊆ {|av = ov ∧ ab = ob ∧ afv

= ofv |}"
by auto

next
show "{|ax = ox ∨ ax = f ox |} ⊆ {|ax = ox ∨ ax = f ox |}"

by auto

next
show "{|True |} ⊆ {|True |}"

by auto

next
show "` WHILE ´b = 0 DO ´v := ´x;; ´fv := f ´v;; ´b := BCAS ´x,

´v, ´fv SACB OD sat [{| True |} ,{|av=ov ∧ ab=ob ∧ afv=ofv |} ,{|ax=ox ∨ ax=f
ox |} ,{| True |}]"

proof (rule While)

show "stable {|True |} {|av = ov ∧ ab = ob ∧ afv = ofv |}"
by auto

next
show "{|True |} ∩ - {|´b = 0 |} ⊆ {|True |}"

by auto

next
show "stable {|True |} {|av = ov ∧ ab = ob ∧ afv = ofv |}"

by auto

next
show "∀ s. (s, s) ∈ {|ax = ox ∨ ax = f ox |}"

by auto

next
show "` ´v := ´x;; ´fv := f ´v;; 〈IF ´x = ´v THEN ´x := ´fv;;

´b := 1 ELSE ´b := 0 FI〉 sat [{|True |} ∩ {|´b = 0 |}, {|av = ov ∧ ab = ob

13

∧ afv = ofv |}, {|ax = ox ∨ ax = f ox |}, {|True |}]"
proof (rule_tac pre’="{| ´b = 0 |}" and

guar’="{| ax=ox ∨ ax=f ox |}" and
rely’="{| av=ov ∧ ab=ob ∧ afv=ofv |}" and
post’="{| True |}" in Conseq)

show "{|True |} ∩ {|´b = 0 |} ⊆ {|´b = 0 |}"
by auto

next
show "{|av = ov ∧ ab = ob ∧ afv = ofv |} ⊆ {|av = ov ∧ ab = ob

∧ afv = ofv |}"
by auto

next
show "{|ax = ox ∨ ax = f ox |} ⊆ {|ax = ox ∨ ax = f ox |}"

by auto

next
show "{|True |} ⊆ {|True |}"

by auto

next
show "` ´v := ´x;; ´fv := f ´v;; 〈IF ´x = ´v THEN ´x := ´fv;;

´b := 1 ELSE ´b := 0 FI〉 sat [{|´b = 0 |}, {|av = ov ∧ ab = ob ∧ afv = ofv |},
{|ax = ox ∨ ax = f ox |}, {|True |}]"

proof (rule_tac mid="{| ´fv = f ´v |}" in Seq)

show "` ´v := ´x;; ´fv := f ´v sat [{|´b = 0 |}, {|av = ov ∧
ab = ob ∧ afv = ofv |}, {|ax = ox ∨ ax = f ox |}, {| ´fv = f ´v |}]"

proof (rule_tac mid="{|True |}" in Seq)

show "` ´v := ´x sat [{|´b = 0 |}, {|av = ov ∧ ab = ob ∧ afv

= ofv |}, {|ax = ox ∨ ax = f ox |}, {| True |}]"
by (rule Basic, auto)

next
show "` ´fv := f ´v sat [{|True |}, {|av = ov ∧ ab = ob ∧

afv = ofv |}, {|ax = ox ∨ ax = f ox |}, {| ´fv = f ´v |}]"
by (rule Basic, auto)

qed
next

show "` 〈IF ´x = ´v THEN ´x := ´fv;; ´b := 1 ELSE ´b := 0

FI〉 sat [{|´fv = f ´v |}, {|av = ov ∧ ab = ob ∧ afv = ofv |}, {|ax = ox ∨
ax = f ox |}, {|True |}]"

proof (rule Await,auto)

show "
∧
V. ` IF ´x = ´v THEN ´x := ´fv;; ´b := Suc 0 ELSE

´b := 0 FI sat [{|´fv = f ´v |} ∩ {V}, {(s, t). s = t}, UNIV, {|´x = x V

∨ ´x = f (x V) |}]"
proof (rule Cond, auto)

show "
∧
V. ` ´x := ´fv;; ´b := Suc 0 sat [{|´fv = f ´v |}

∩ {V} ∩ {|´x = ´v |}, {(s, t). s = t}, UNIV, {|´x = x V ∨ ´x = f (x V) |}]"
proof (rule_tac mid="{|´x = x V ∨ ´x = f (x V) |}" in Seq)

show "
∧
V. ` ´x := ´fv sat [{|´fv = f ´v |} ∩ {V} ∩ {|´x

= ´v |}, {(s, t). s = t}, UNIV,{|´x = x V ∨ ´x = f (x V) |}]"

by (rule Basic, auto)

next

14

show "
∧
V. ` ´b := Suc 0 sat [{|´x = x V ∨ ´x = f (x

V) |}, {(s, t). s = t}, UNIV, {|´x = x V ∨ ´x = f (x V) |}]"
by (rule Basic, auto)

qed
next

show "
∧
V. ` ´b := 0 sat [{|´fv = f ´v |} ∩ {V} ∩ - {|´x

= ´v |}, {(s, t). s = t}, UNIV, {|´x = x V ∨ ´x = f (x V) |}]"
by (rule Basic, auto)

qed
qed

qed
qed

qed
qed

qed

end

D Bibliography

References

[1] Atomic Ptr Plus. Available from World Wide Web: http://
atomic-ptr-plus.sourceforge.net/. This project is a collection of
various lock-free synchronization primitives and fast pathed synchro-
nization functions.

[2] Generic Concurrent Lock-Free Linked List. Available from World Wide
Web: http://www.cs.rpi.edu/∼bushl2/project web/page5.html.

[3] NOBLE. Available from World Wide Web: http://www.cs.chalmers.
se/∼noble/.

[4] Nonblocking multiprocessor/multithread algorithms in C++. Avail-
able from World Wide Web: http://www.musicdsp.org/archive.
php?classid=0#148.

[5] Software Transactional Memory. Available from World Wide Web:
http://en.wikipedia.org/wiki/Software transactional memory.

[6] J.-R. Abrial. The B-book: assigning programs to meanings. Cambridge
University Press, New York, NY, USA, 1996.

[7] H. Gao. Design and verification of lock-free parallel algorithms.
PhD thesis, Apr. 2005. Available from World Wide Web: http:
//dissertations.ub.rug.nl/faculties/science/2005/h.gao/.

15

http://atomic-ptr-plus.sourceforge.net/
http://atomic-ptr-plus.sourceforge.net/
http://www.cs.rpi.edu/~bushl2/project_web/page5.html
http://www.cs.chalmers.se/~noble/
http://www.cs.chalmers.se/~noble/
http://www.musicdsp.org/archive.php?classid=0#148
http://www.musicdsp.org/archive.php?classid=0#148
http://en.wikipedia.org/wiki/Software_transactional_memory
http://dissertations.ub.rug.nl/faculties/science/2005/h.gao/
http://dissertations.ub.rug.nl/faculties/science/2005/h.gao/

[8] T. L. Harris, K. Fraser, and I. A. Pratt. A practical multi-word
compare-and-swap operation. In Proceedings of the 16th Interna-
tional Symposium on Distributed Computing, 2002. Available from
World Wide Web: http://www.cl.cam.ac.uk/research/srg/netos/
lock-free/.

[9] M. Herlihy. Wait-free synchronization. ACM Transactions on
Programming Languages and Systems, 13(1):124–149, January 1991.
Available from World Wide Web: http://citeseer.ist.psu.edu/
herlihy93waitfree.html.

[10] M. P. Herlihy and J. M. Wing. Linearizability: a correctness condition
for concurrent objects. ACM Trans. Program. Lang. Syst., 12(3):463–
492, 1990. Available from World Wide Web: http://doi.acm.org/
10.1145/78969.78972.

[11] HP. Atomic Ops. Available from World Wide Web: http://www.hpl.
hp.com/research/linux/atomic ops/.

[12] Keir Fraser, Tim Harris, Ian Pratt, and Chris Purcell. Practical lock-
free data structures. Available from World Wide Web: http://www.
cl.cam.ac.uk/research/srg/netos/lock-free/.

[13] L. Lamport. The +CAL Algorithm Language. Available
from World Wide Web: http://research.microsoft.com/users/
lamport/pubs/pubs.html#pluscal.

[14] S. Owicki and D. Gries. Verifying properties of parallel programs: an
axiomatic approach. Commun. ACM, 19(5):279–285, 1976. Available
from World Wide Web: http://portal.acm.org/citation.cfm?id=
360051.360224.

[15] L. Prensa Nieto. Verification of Parallel Programs with the
Owicki-Gries and Rely-Guarantee Methods in Isabelle/HOL. PhD
thesis, Technische Universität München, 2002. Available from
World Wide Web: http://tumb1.biblio.tu-muenchen.de/publ/
diss/allgemein.html.

[16] H. Sundell and P. Tsigas. Lock-free and practical deques using
single-word compare-and-swap. Technical Report 2004-02, Com-
puting Science, Chalmers University of Technology, Mar. 2004.
Available from World Wide Web: http://citeseer.ist.psu.edu/
sundell04lockfree.html.

[17] V. Vafeiadis, M. Herlihy, T. Hoare, and M. Shapiro. Proving correctness
of highly-concurrent linearisable objects. In PPoPP ’06: Proceedings
of the eleventh ACM SIGPLAN symposium on Principles and practice

16

http://www.cl.cam.ac.uk/research/srg/netos/lock-free/
http://www.cl.cam.ac.uk/research/srg/netos/lock-free/
http://citeseer.ist.psu.edu/herlihy93waitfree.html
http://citeseer.ist.psu.edu/herlihy93waitfree.html
http://doi.acm.org/10.1145/78969.78972
http://doi.acm.org/10.1145/78969.78972
http://www.hpl.hp.com/research/linux/atomic_ops/
http://www.hpl.hp.com/research/linux/atomic_ops/
http://www.cl.cam.ac.uk/research/srg/netos/lock-free/
http://www.cl.cam.ac.uk/research/srg/netos/lock-free/
http://research.microsoft.com/users/lamport/pubs/pubs.html#pluscal
http://research.microsoft.com/users/lamport/pubs/pubs.html#pluscal
http://portal.acm.org/citation.cfm?id=360051.360224
http://portal.acm.org/citation.cfm?id=360051.360224
http://tumb1.biblio.tu-muenchen.de/publ/diss/allgemein.html
http://tumb1.biblio.tu-muenchen.de/publ/diss/allgemein.html
http://citeseer.ist.psu.edu/sundell04lockfree.html
http://citeseer.ist.psu.edu/sundell04lockfree.html

of parallel programming, pages 129–136, New York, NY, USA, 2006.
ACM Press. Available from World Wide Web: http://doi.acm.org/
10.1145/1122971.1122992.

17

http://doi.acm.org/10.1145/1122971.1122992
http://doi.acm.org/10.1145/1122971.1122992

	Introduction
	Related work
	Lock-free libraries and algorithms
	Basic notions

	My Work
	Introduction
	Assume-Guarantee in Isabelle
	B method
	TLA+ and +CAL

	Future work and conclusion
	Courses
	TiC06
	Models and multi-agents system

	B Machines
	Concrete Syntax
	Assignment
	Atomic assignement
	Atomic assignement with CAS

	Bibliography

